LIS2024

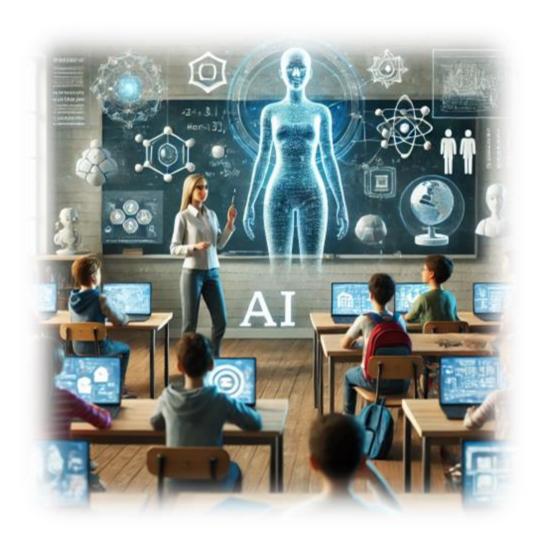
Navigating the AI and XR Opportunities for Education: **Case Studies and Critical Perspectives**

Exploring the Intersection of Artificial Intelligence and Extended Reality in Modern Learning Environments

Prof Eleni Mangina

Vice-Principal (International) College of Science School of Computer Science University College Dublin

eleni.Mangina@ucd.ie



Introduction to Al and XR in Education

What is Al?

Definition and examples of AI in everyday life

Applications in education (e.g., adaptive learning, predictive analytics)

What is XR?

Definition of XR, including Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR)

Applications in education (e.g., immersive simulations, interactive learning environments)

The Current Landscape of Al and XR in Education

Adoption and Trends

- Statistics on Al and XR adoption in education
- Popular use cases (e.g., language learning apps, virtual field trips, lab simulations)

Driving Forces

- Technological advancements
- Educational demands (personalization, engagement, accessibility)
- Pandemic impact and remote learning acceleration

Case Study 1: AI in Personalized Learning

The "best" Al for personalized learning can vary depending on specific educational needs, goals, and contexts

Factors to Consider When Choosing an AI for Personalized Learning:

- **Age and Grade Level:** Some platforms are better suited for specific age groups or subjects (e.g., DreamBox for K-8 math).
- **Subject Focus:** Ensure the platform aligns with the subjects you need (e.g., Carnegie Learning for math).
- Integration: Check if the AI integrates well with your existing LMS or teaching tools.
- **Data Privacy:** Consider platforms that prioritize data security and privacy.
- **Customization:** Some platforms offer more customization options for educators than others.

Case Study 2: XR in Immersive Learning Environments

The "best" XR (Extended Reality) tools for immersive learning environments can vary based on specific educational needs, the target audience, and the desired learning outcomes

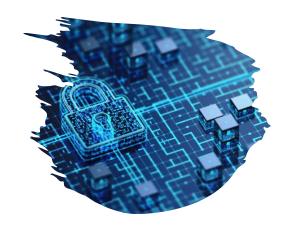
zSpace

::: MEL Science

AltspaceVR

Factors to Consider When Choosing an XR Tool for Education:

- Content and Curriculum Alignment: Ensure the XR tool offers content that aligns with your educational goals and curriculum standards.
- **Ease of Use:** Consider how easy the platform is for both teachers and students to use, including setup, navigation, and integration with existing classroom technology.
- Hardware Requirements: Some XR platforms require specific hardware, such as VR headsets or specialized screens. Evaluate the cost and accessibility of these tools.
- Interactivity and Engagement: Look for platforms that offer highly interactive and engaging content, as these are more likely to enhance learning and retention.
- Accessibility and Inclusivity: Ensure the platform is accessible to all students, including those with disabilities, and consider the platform's approach to inclusive learning.

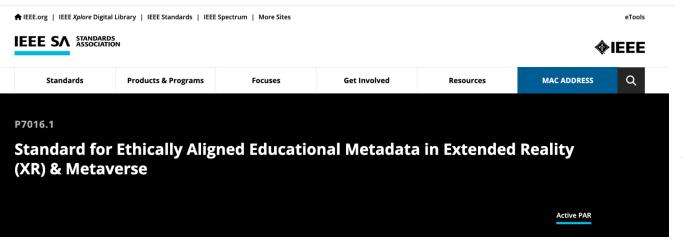


Critical Perspectives: Challenges and Concerns

Challenges of AI and XR in Education

- Equity and access: Digital divide concerns
- Data privacy and security issues
 - Potential for dependency on technology

Ethical Considerations


- Bias in Al algorithms
- Misuse of immersive technologies (e.g., VR addiction, misinformation)

Standard for Ethically Aligned Educational Metadata in Extended Reality (XR) & Metaverse

Join our efforts - IEEE P7016.1

WORKING GROUP DETAILS

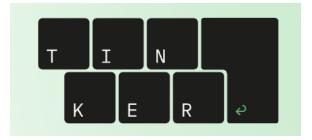
Society	IEEE Society on Social Implications of Technology	
	Learn More About IEEE Society on Social Implications of Technology >	
Sponsor Committee	SSIT/SC - Social Implications of Technology Standards Committee	
	Learn More About SSIT/SC - Social Implications of Technology Standards Committee	>
Working Group	EAEM-XRM - Ethically Aligned Educational Metadata in XR & Metaverse	
IEEE Program	Christy Bahn	
Manager	Contact Christy Bahn >	
Working Group Chair	Eleni Mangina	

Case Study 3: Balancing Innovation with Responsibility

Finland's Approach to Digital and Al Literacy

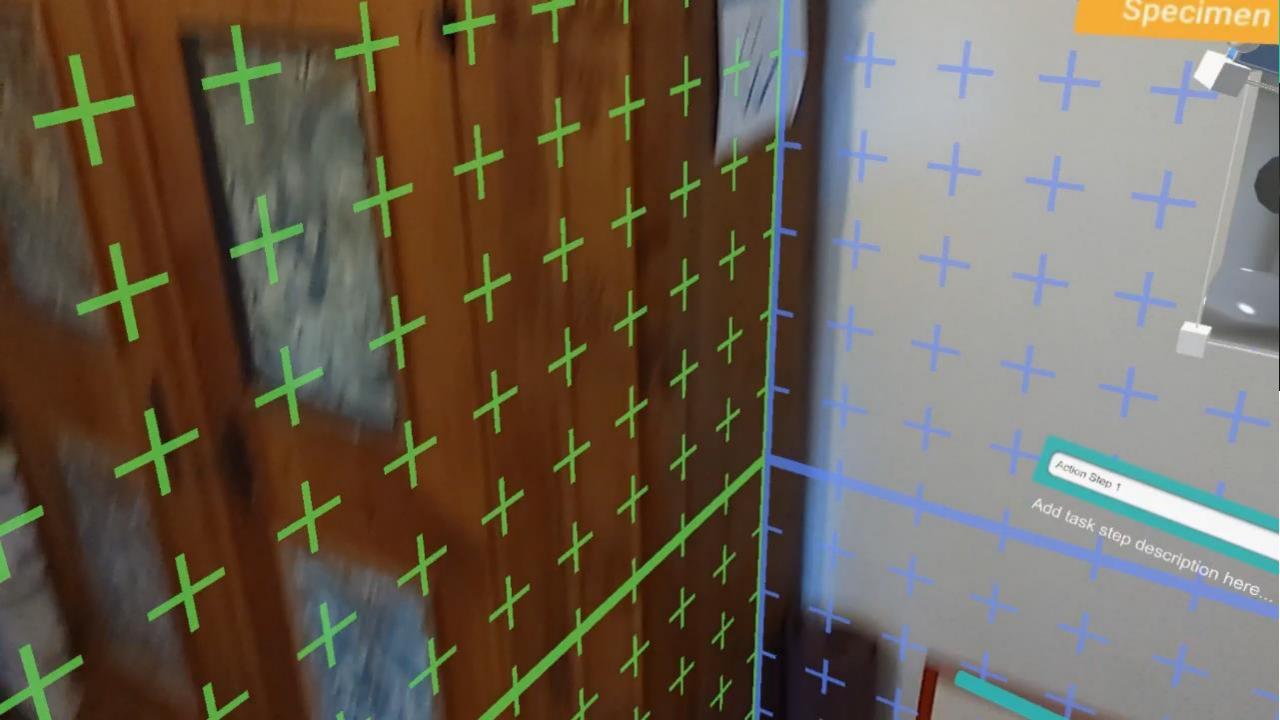
- Finland's national initiative for digital and Al literacy in schools
- Emphasis on responsible use and critical thinking
- Results and feedback from educators and students

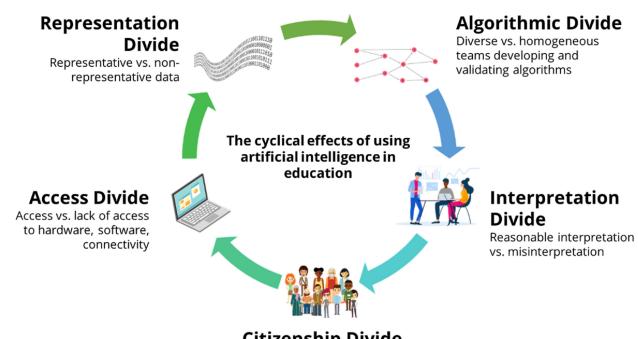
XR & Al Case studies in my lab


VR-PAIN

Technology in Undergraduate

Physiotherapy Education





Key Takeaways

- The potential of AI and XR in transforming education
- Importance of addressing challenges and ethical considerations
- The need for ongoing research, dialogue, and collaboration

Call to Action

- Encouraging educators, policymakers, and technologists to collaborate
- Prioritizing equitable access and responsible use of technology
- Fostering a culture of innovation and critical thinking

Citizenship Divide

Skills, economic, health, and civic divides that perpetuate structural stigmas

Image Attribution: Dieterle, E., Dede, C. & Walker, M. The cyclical ethical effects of using artificial intelligence in education. *Al* & *Soc* **39**, 633–643 (2024).

https://doi.org/10.1007/s00146-022-01497-w

Q & A

Prof Eleni Mangina

Vice-Principal (International) College of Science School of Computer Science University College Dublin

eleni.Mangina@ucd.ie

